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The weak-field magnetoresistance is calculated for three cubically symmetric versions of
Cohen’s multivalley model (originally derived for Bi) in which the valleys are surfaces of
revolution along the (111), (100), and {110) directions of momentum space. The Jones-Zener
weak-field solution of the Boltzmann equation, an isotropic scattering time, and degenerate
statistics are assumed. The Seitz coefficients b, ¢, and 4 and the symmetry parameter
z (b+c+2d=0) were computed for about 3000 values of the energy and mass parameters € and
1 which cause the model to become nonellipsoidal and nonparabolic. Graphs of the results are
presented for selected values of € and . For u=1, the z values are precisely the same (0, +1)
as in the corresponding ellipsoid-of-revolution parabolic models. Otherwise, ‘|z | deviates
only slightly (<0.3) from the simple values for wide ranges of € and p, including the range in
which the Fermi surface acquires a very distorted dumbbell shape. The only exception is a
peak in z which occurs for p<1 when the energy surfaces are nearly isotropic and b, ¢, and d
are all small. Experimental values of z in highly degenerate samples of p-type SnTe lie be-
tween — 1 and — 6, the coefficient b is large, and the Fermi surfaces in this compound are
known to be strongly prolate and (111) oriented. Hence the Cohen model, when used with the
above-mentioned restrictions, cannot account for the experimental weak-field magnetoresis-
tance in SnTe. The significance of this result, as well as some modifications which might
bring theory and experiment closer together, is discussed.
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I. INTRODUCTION

This is a continuation of a study of galvanomag-
netic effects in a nonellipsoidal nonparabolic mod-
el. The weak-field Hall coefficient R, was treated
in an earlier paper® (hereafter called part I); the
present work investigates the weak-field magneto-
resistance and compares the results with experi-
mental data on SnTe.?

The models used for the calculation are cubical-
ly symmetric versions of the one which Cohen
derived for Bi.> This model was chosen because
of the basic similarity between the band structures
of the column-V semimetals As, Sb, and Bi, and
IV-VI semiconductors such as PbS, PbSe, PbTe,
and SnTe.? Furthermore, the Cohen model gener-
ates dumbbell-shaped Fermi surfaces for certain
ranges of its parameters, and Shubnikov-de Haas
measurements on SnTe had suggested the possi-
bility of such a surface.’

The weak-field Hall coefficient may be written
in the form

Ry=7/ne, (1)
where 7 is a dimensionless mixing or anisotropy
factor® and ne is the charge density. Hall-coeffi-
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cient measurements on p-type SnTe revealed that
7=(0.6+10)% over awide range of carrier densi-
ties.” The factor » lies between 0. 75 and 1 for all
cubically symmetric multivalley models composed
of prolate ellipsoids of revolution. The results of
paper Ishowed that, in general, the distortions of
the Cohen surface lower the values of », so that
the model can easily account for the experimental
Hall data on SnTe,

However, matching experimental and theoretical
Hall-factor values does not provide very strong
evidence for the suitability of a particular band
model. Magnetoresistance behavior is much more
sensitive to the details of the shape of a Fermi
surface, and would provide a more severe test of
any proposed model.

We wishto point out an error in the final expres-
sion for # found in Eq. (19) of paper I. A factor of
K should be inserted between the first curly brack-
et and integral sign in the numerator, The cor-
rect expression was used to prepare Table I and
Fig. 2 of that paper.

II. COHEN SURFACE

Cohen considered three types of Fermi surfaces
in his paper on Bi.® His case (a) will be used

980
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oriented along the (111), (100), and (110) direc-
tions of momentum space, In the first two cases,
symmetry requires that the Cohen-type Fermi sur-
face become a surface of revolution, The same
shape was also used for the third case.

The Cohen surface of revolution is given by

2
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where the momenta p, and p, identify the longitu-
dinal (symmetry) axis and any transverse direction,
respectively, m; and m, are the corresponding
band-edge masses, & is the carrier energy, and
8, and m’ are the two parameters which (when
finite) make the model nonparabolic and nonellip-
soidal, respectively.

The computation will be presented in terms of
the dimensionless variables € =8/8,, w=m,;/mj ,
x2=p%/m,8,, and y%=p?/m,;8,. These substitu-
tions reduce Eq. (2) to the more compact form

€ =3x%(l+e +3m0) 43y | (3)
Deviations from parabolicity and ellipticity now re-
sult from nonzero values of € and ., respectively.
Additional remarks about the nature of this Cohen
surface of revolution are contained in Sec. 2 of
paper 1.

III. OUTLINE OF CALCULATION

A detailed description of the calculation is given
in the thesis of the first author.® The calculation
uses the Jones-Zener weak-field solution of the
Boltzmann equation, and assumes degenerate sta-
tistics (which are appropriate for the high-carrier-
density data on SnTe) and an isotropic scattering
time 7. The effects that these restrictions have
on the significance of the results will be discussed
in Sec. IV,

The first step is to calculate the magnetoconduc-
tivity tensor components o;;,; in the expression

I,=0,E; +0uEjHy + 0350 E; Hy Hy + 2+ (4)

for a single Cohen surface. Summation from 1 to
3 is implied wherever repeated indices appear in
the above and in other equations to follow, The
zero-field conductivity and Hall terms o;; and oy,
were worked out in paper I. In all cases, the re-
sults were obtained from the usual Jones-Zener
iterative solution to the Boltzmann equation [see
Eq. (9) in paper I].

Before any calculations are actually carried out,
it is possible to establish certain relationships
among the o0y, which follow from Onsager’s rela-
tion, or from the symmetry properties of the mod-
el, but not from the specific analytical form of the
Cohen surface. To begin with the Cohen surface

of revolution can be placed in an orthogonal coor-
dinate system such that it has twofold rotational
symmetry about each coordinate axis., Consequent-
ly, the only possible nonzero o;;,, components are
three 0, six 0;5;;, and six (0;;;+0,;;;). The last
two types of terms are paired because they have
no separate physical significance.

Furthermore, when axis 3 is taken as the axis
of rotation (i. e., the p, or y axis) of the Cohen
surface, axes 1 and 2 become indistinguishable,
and certain equalities among the nonzero o,
must hold, Use of Onsager’s relation leads to fur-
ther simplifications. As a result of the above,
only the following seven components need be com-
puted:

Ou11, Ossas
01122, O1133, Osain
(01212 + 01201), (01313 + O1331) .

But there is one additional relationship among
the 0;;,; . Because the Cohen surface is a surface
of revolution, all directions in the 1-2 plane are
equivalent, Some simple algebra shows, as a con-
sequence, that

01111 = 01122 + 01212+ 01221 + (5)

Now we proceed to the calculation itself; it re-
veals that 03333 and o35, are identically zero. The
remaining terms have the form

net ® s 4 vz 8fo d
o =(+or-) ——=—— T Ajjm € €
ijkl 9€
mymym, J,

” y2 8fo
/ AnE Yy de . (6)
0

The appropriate signs and combinations of mass
components m, and m, are shown in Table I. The
functions A;;,, arewrittenoutinthe Appendix, A,
=1+€(1+% ). For degenerate statistics, the ra-
tio of integrals in Eq. (6) reduces to 734,,,,/4,,
evaluated at the Fermi energy.

The difference between the structure of the pres-
ent results and those for an ellipsoidal parabolic
model is the presence of nonzero 0,;;; and oy,

terms, The calculations also reveal that
01111 =~ O1221 (7
and 304333 =01122 + 01313 - (8)

The latter equation is analogous to Eq. (10) in Zit-
ter’s analysis of Bi.°

The next step is to transform the results for
each valley to the cubic-axis coordinate system of
the crystal, and sum the contributions from all the
valleys. The results, unlike those for the o;; and
0;;, terms, depend on the valley orientations.

The final step is to invert the results and relate
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TABLE I. Signs and mass combinations for the non- -3KA;,
2610 0y of Eq. (6). £= 5KA 11— 2KA 150+ K%A 155+ Agayy ' (12d)
Component Sign Masses (10()) model
O - mimy b=A(KA 100+ K?A 153 +Ags1) — 1, (13a)
Oi122 - mim,
T1133 - m} c==—A(-TKA;y +3KA150) +1 (13b)
O3311 - mem? =—A(5KA  ; — 2KA 155+ KA 155+ Agayy) (13c)
7112 N mim; 2= TKA 1 = 2KA 150 + K Anaa +Agyy . (13d)
T1313 * mim, 5KA yyy — 2KA 150 + KA 133+ Agsyy
(110) model
—Lla(_ 2 -
them to the magnetoresistance coefficients. We =3A(= 5KA1111 +6 KA i3z + 3K A 153 + 3A3011) ti4 )
define a dimensionless weak-field magnetoresis- a
tance by the relation €=~ 3A(-9KA 1y +4 KA 00+ K*Ayyg3+ Aggry) + 1’(14b)
Ap/po=M o, (kxH/C)?, (9) = A KA1 - 2KA 10 + KA 1133+ Agary) (14c)
where Ap/p, is the fractional change in the zero- —(13KA ;- 2KA 5+ K %A 1133 +A3311) (14d)
field resistance, a8y and 6¢ ¢ identify the current 5KA 1y — 2KA 15 +K?A 155+ Agayy
and magnetic field directions relative to the cubic
axes of the crystal, pu, is the Hall mobility, and where A=(2KA, +Ag)/K(KA 3+24A4)% .  (15)

H is the magnetic field intensity. The factor C
=10® when W, is in cm?/Vsec and H is in Oe,

For crystals having the three highest types of
cubic symmetry (m3m, 43m, and 432 in the abbre-
viated Hermann-Maugin notation), the weak-field
magnetoresistance for all current and field direc-
tions may be expressed in terms of the three di-
mensionless Seitz coefficients

MY =b+c(bymg )P +d(ein?) (10)

where ¢, and 7, are the direction cosines of the
sample current and magnetic field directions with
respect to the cubic axes, We will also examine
the expressions for the magnetoresistance symme-
try parameter z, defined as

==0+c)d . (11)

Thefinal resultsfor the three multivalley models
are summarized below. They are expressed in
terms of K(=m,;/m,), the A;; and A;;, given in Eq.
(18) of paper I, and the 4, ,,, defined by Eq. (6) and
written out in the Appendix. Equations(5), (7), and
(8) were used to eliminate 0y35, 0129, and 0,33
from the results so that only the A;;, correspond-
ing t0 01111, O1122, O1133, and 033y appear:

{(111) model

= %A( —5KA 11 +5KA 150+ 2K2A1133 + 2A3311) -1

(12a)

¢==3A(=11KA 13, +5KA 150+ 2K3A 153+ 2A331,) +1,
(12)
=SA(5KA 1111 = 2KA 1120 +KPA 1133 + Aggyy) (12c)

IV. DISCUSSION

It is to be emphasized that Egs. (12)-(15) result
when the Cohen model is substituted into the Jones-
Zener solution of the Boltzmann equation, and it is
assumed that the statistics are degenerate and the
scattering time is isotropic. These results are
functions of K, and (through the presence of the
Ay, Ay, and Ay, ) of the two Cohen-model pa-
rameters € the reduced energy and u the inter-
band mass ratio [see Eq. (3)]. When p =0, the
Fermi surface remains ellipsoidal at all €, but its
shape changes with energy. When u # 0, the Fermi
surface is not ellipsoidal at any nonzero €.

The symmetry parameter z has the values 0, +1,
and - 1 for ellipsoid-of -revolution parabolic (EORP)
models with valleys in the (111), (100), and {110
directions, respectively. The present results dif-
fer from these simple values only because of the
presence of A;;,;. This is an example of Keyes’s
analysis which demonstrated that the simple values
result whenever the sum of the three longitudinal
magnetoconductivity components of a single valley
(i.e., the 0;;;;) is zero.'®

As in the case of the Hall coefficient [see Eqs.
(23) and (24) of paper I], the results summarized in
Egs. (13)-(15)become considerably simpler when
=1, even though the Fermi surfaces are not el-
lipsoidal in this case. For pu=1, A,y;;=0, sothat
the EORP values for the symmetry parameter z
result, Also, Ajg3=Ay2. We define K'=XK,
where

X=(1+fe)/(1+% e +¥e? (16)
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TABLE II. Calculated Seitz coefficients and symmetry parameters for cubically symmetric Cohen models with « =1,

Model b c d z
(111 (@K' +1) @K"2+5K' +2W) | - 2K’ +1) @K' +5K’ +2W) ‘1 202K’ +1)(K'%— 2K’ + W) 0
3K’ (K' +2)2 3K’ (K’ +2)? 3K/ (K’ +2)?
(2K’ +1) (K2 +K' + W) - 32K’ +1) - (2K’ +1) (K2 = 2K’ + W)
(1 - = 32K +1)
(100) K (K" +2) 1 & 2?2 1 K (K" +2) 1
110 302K’ +1)(K'2+2K' + W) _ — 2K’ +1) (K2 +4K' + W) +1 (2K’ +1)(K'* = 2K’ + W)
4K’ (K’ +2)? 2K' (K’ +2)2 4K (K! +2)2 !

and W =XA3y,/A

_ X(1+¥ e +8ec? 2P

1+42 ¢ +3e?

am

Then the results of Eqs. (12)-(15) reduce tothose
shown in Table II. Their form is exactly the same

(a)
2.8

K=5 4
| w0 [\ ]
20

b, -c, d, -z
T

L b, -c d m
0
0.1 1.0 10 100
€
(b)
20
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. d// b, -c B
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. L (z=0) -
¢ 1.0
o = .
e .
0 [ b¢—0n ™ 7
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€
(c)
2.0
L K= 5 .
L p=20 |
N -
-
¢
e B
.
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as that found for the corresponding EORP models,
except that K’ has replaced K and W has replaced
unity,

An IBM 7090 computer was used to evaluate the
Ay, Ay, and Ay, for about 3000 combinations
of 1 and € in the range between 0 and 100. The
results were used to calculate b, ¢, d, and z for

(d)

2.6
I K =100 N
i e o I
20
v ]
- i -
T 4 [
E-]
1.0 X
- b -
- -C 7
0
0.1 1.0 10 100
€
(e)
1.6
L d K =100 -
- — p= 1 -
o 10
¢ - (z=0) -
) I = &
-—\
}._ o
0
0.1 1.0 10 100
€
(f)
10
- K =100
=100
N d 7
© ~ b -1
- -C
?_ 5 /
IS L -
2 -z !
0
0.1 1.0 10 -

€

FIG. 1. Behavior of Seitz coefficients b, ¢, and d and magnetoresistance symmetry parameter z, as a function of
energy ratio €, for six combinations of mass ratios K and p. All units are dimensionless.
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the three multivalley models with K=5, 10, 25,
50, and 100,

The behavior of b, ¢, d, and z as a function of
€, for selected values of u and K in the (111) mod-
el, is shown in Fig, 1. This behavior is typical of
the general results.

For € =0, b, c, and d start out at the values
which occur for the EORP model at that K value,
since the Cohen model reduces to the simpler one
at € =0. As € increases, b, ¢, and d decrease in
magnitude and then increase again,

The explanation for this behavior is particularly
straightforward when £ =0. Then the surfaces are
always ellipsoidal, but they become less prolate,
and ultimately oblate, with increasing €. The co-
efficients b, ¢, and d are smallest near the € val-
ue at which the Fermi surface becomes spherical,
But they are not exactly zero, as they would be for
an isotropic model and degenerate statistics., The
reason is that the various derivatives on the sur-
face are not isotropic because the shape of the Fer-
mi surface changes with energy.

It is convenient to discuss the behavior of the
symmetry parameter z in the ranges p<1 and u> 1,
For the (111) model, we have z=0at p =1, as al-
ready noted (Table II), for all €.

As u goes from 1 to 0, a peak develops in 2z, oc-
curring near the value € K -1, All of the coeffi-
cients b, ¢, and 4 have become small at this € be-
cause the Fermi surface is nearly isotropic. The
symmetry parameter becomes large simply be-
cause d is even smaller than b +¢ [Eq. (11)], but
only over a limited range of €. It should be em-
phasized that the range 0 <pu <1 corresponds to
modestly distorted Fermi surfaces for all €; no
dumbbell shapes can develop [Eq. (5) of I].

T

€ =01

0.1

0.01 [

100

0.001
0.1 1.0

10 100

FIG. 2. Behavior of magnetoresistance symmetry
parameter z as a function of mass ratio u, for seven
values of energy ratio €, with mass ratio K=5. All
units are dimensionless.

TABLE III. Experimental weak-field magnetoresis-
tance, Seitz coefficients, and symmetry parameters for
p-type PbTe and SnTe.

Compound PbTe SnTe SnTe
Carrier density 3 50 90
(1018 em™?)
Temperature 295 77 295 77 295 s
°K)
M 0.275  0.196 0.46  0.57 0.69  1.00
MmN 0.345  0.151 0.56  0.58 0.86 1,13
Ml 0.605  0.348 0.72  0.66 1.04  1.20
b 0.345  0.151 0.56  0.58 0.86 1.13
c ~0.330 —0.152 -0.27 —0.10 -0.35 —0.20
d 0.520  0.394 0.34 0.16 0.36  0.15
z -0.03 0.003 -0.9 -3.0 -1.4 —6.2

For > 1, the Fermi surface becomes very dis-
torted as € increases, especially for large u.
This leads to large values of b, ¢, and d. Note
particularly Fig, 1(f): All three coefficients ex-
ceed 10 before € reaches 4. Nevertheless, the
symmetry parameter only deviates from zero by
modest amounts, viz., |z [, ~ 0.2 and 0. 3 for
k=20, K=5 and for u =100, K=100, respectively.
Figure 2 provides a more general indication of
the behavior of z for K =5 in the (111) model.

V. APPLICATION TO SnTe.

The motivation for carrying out this rather in-
volved calculation was the hope that it could ex-
plain the very strange magnetoresistance data
which had been obtained on SnTe.? A brief com-
parison of experiment and calculation was present-
ed earlier.!! Measured weak-field coefficients for
SnTe at two temperatures and two carrier densi-
ties, together with values of b, ¢, d, and z derived
from these data, are given in Table III. For com-
parison, the same quantities for p-type PbTe at a
considerably lower carrier density are also in-
cluded,'?

As noted in the Introduction, the Cohen model
was chosen for the calculation because it was ap-
propriate in a general sense for IV-VI compounds,
and, more specifically, because there seemed to
be some experimental evidence for the dumbbell-
shaped Fermi surface which was a feature of the
model,

But the Cohen surface was then fed into the
Jones-Zener solution of the Boltzmann equation,
which is not a general solution of the Boltzmann
equation, This type of solution might be quite un-
suitable for the model under consideration. Since
magnetoresistance is usually very sensitive to de-
tails of the behavior of electrons in electric and
magnetic fields, a better solution to Boltzmann’s
equation might completely change the nature of the
results embodied in Eqs, (12)-(15). This limita-
tion must be kept in mind in any comparison of
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theory and experiment,

On the other hand, we have the followirg histori-
calfactspertaining specifically to multivalley mod-
els.'® The special values of the magnetoresistance
symmetry parameter z which were predicted by
theory for cubically symmetric EORP multivalley
models were obtained using the Jones-Zener solu-
tion to the Boltzmann equation, They were shown
to apply if 7 is isotropic, or if it is a tensor which
is diagonal in the principal-axis coordinate system
of each valley.

Experimentally, the predicted values have been
confirmed (z =0 in n-type Ge, a (111) model, and
z =1 in n-type Si, a (100) model) over wide tem-
perature ranges in which isotropic scattering, an-
isotropic scatiwcring, or mixtures of both are known
to be appropriate,

As shown in Table III, the experimental weak-
field magnetoresistance symmetry in p-type PbTe
is very close to the z =0 value predicted for a(111)
EORP model. More direct measurements (using
the Shubnikov-de Haas effect) of the Fermi sur-
faces near the top of the valence band in PbTe con-
firm that they are prolate, (111)-oriented ellip-
soids.* The scattering in p-type PbTe is not iso-
tropic, since the K values deduced from the strong-
and weak-field data differ by mure than a factor of
2.

Because the EORP multivalley model, assuming
a Jones-Zener-type solution and an isotropic 7,
works so well for PbTe, it seemed reasonable to
apply a generalized multivalley model with the
same assumptions to SnTe,

As shown in Table III, z in SnTe is far from the
zero value found in PbTe, and, furthermore, it de-
pends strongly on temperature and carrier density.
Since the z values in SnTe are negative and, at
room temperature, not too different from ~ 1, we
at one time considered that some kind of general-
ization of a (110) EORP model might be appropri-
ate.

But it is now definitely established that the Fermi
surfaces in p-type SnTe are strongly prolate and
(111) oriented.'® Hence the suitability of the Cohen
model must be based on the calculated results for
the (111) version only, i.e., on Egs. (12).

The only region in which we could hope to match
the z values of this (111) version to the experimen-
tal results is near the peaks which occur in z when
<1, But this region corresponds to a nearly iso-
tropic surface and to values of b, ¢, and d which
are all small, These properties are completely
different from the weak-field results shown in Ta-
ble III and from the strong-field data which provid-
ed the information about the Fermi-surface shape,!’

We feel that it is particularly significant that the
calculated z values deviate so slightly from the re-

sults for the simpler EORP models over such a
wide range of parameters of the Cohen model, In
most cases, these parameter values correspond to
a highly distorted Fermi surface which is rapidly
changing its shape as a function of energy.

This shape-evolution feature alters the relative
values of the Fermi velocity on different parts of
the Fermi surface, Since the Fermi velocity and
scattering time occur in combination in the various
transport integrals, the presence of shape evolution
is equivalent to the introduction of 7 anisotropy.'®
The anisotropy must be of a polar, not an azimuth-
al nature; i.e., it must be consistent with the ro-
tational symmetry of the valleys.

It therefore seems quite likely that if the results
for the Cohen model were recalculated, assuming
this kind of anisotropic 7, they would still predict
only modest deviations from the magnetoresistance
symmetry of the corresponding EORP models,

VI. CONCLUSIONS

Some of the high-field measurements on SnTe
had suggested that the Fermi surfaces might have
a dumbbell shape.’ It therefore seemed quite pos-
sible that the Cohen model, for some range of its
parameters, could reproduce the large deviations
of the magnetoresistance symmetry from the usu-
al value for the (111) EORP model,

This hope was not realized. Instead we are led
to the tentative conclusion that magnetoresistance
symmetry is generally insensitive to distortions
from ellipsoidal multivalley models, whether they
involve mass or scattering anisotropy, provided
that the rotational invariance of the carrier prop-
erties in each valley is preserved,

Hence it appears that this rotational invariance
is not appropriate for SnTe. For example, the
cross sections of the Fermi surface perpendicular
to the (111) symmetry axis of the valley could de-
velop three- or sixfold symmetry.

Unfortunately, such distorted Fermi surfaces
will usually require so many parameters to speci-
fy them that numerous alternative types of surfac-
es of similar complexity could equally well account
for the experimental results. This is the point at
which weak-field magnetoresistance will no longer
be a useful tool for acquiring insight into the behav-
ior of carriers in crystals.

This point may have been reached in SnTe. We
believe that the experimental data are accurate,
and are characteristic of high-quality homogeneous
material, But we have been unable to relate the
observed behavior to any of the models which have
been suggested by calculations or by other types
of experimental data on SnTe.



986 EVANS, REGLEIN, AND ALLGAIER

APPENDIX: FUNCTIONS 4;;,

Only A111, Anige, Arrss, and Aggyy will be given,
Egs. (5), (7), and (8) may be used to obtain A,
Ajz1z, and Ajgg

Ay == 3D[aPL)~2ab L2+ (b%- 2uea)l}

+2uedL+pPe?Li] -*"Da[%azLE

- 2abLi++(%-2uea)Lll+ & nebLt

+fp%?n] (A1)
Apze=3Dolab L3+ 3(6pea -0 L]

- pebLli-8u2e?Ls] -2 D,[3a2 L)
-@abLfﬂ’ (b%-2uea)L}

% pedLf+ % ute’Ll]

2D,[$a%LE-2abLt++:(b%-2pea)L?
+§ pedLi+ fru®e?Ls’] (A2)
Aj1as=2Dy(aLld- 5DLE- 5 pe LY), (A3)

Az =D[(0° - 6peab)Li-% ne(3pea—-40%)L}
+88u%e L8 1 12p%3L8)
- 6D, [2ab®L:+5 (14peadb ~ 3b%) L}
+Zpe(l0pea—~110%) L~ p2e?Lt
-2 1%Ll - 18D,[5ab% L}
+1(4peab -3 LE+Lpe(dpea—5b3)LE
-fule?pL’ -f{ule’ Ly , (A4)
where a=(l+€), b=1+€(1-p),
and D,=(1-u)"e"/(1+2)"*%,

The function L2 are defined, and some members
of the set are written out in Appendix B of paper I
Additional members needed for Eqs, (Al)-(A4)
are

Ino

=5[8/(1+w)*+10/(1 +w)?+15/(1 +w) + 15 L],
S[-8/0+wP+2/(1+w)?+3/(1 +w) + 3Ly /w,
518/(1+w)?® - 14/(1 +w)?+3/(1 +w) + 3 LY /u?,
- 8/(1+w)®+26/(1 +w)®-33/(1 +w)

+15 LY /w® |

L3=F[8/(1 +0)* - 38/(1 +)? +87/(1 +w)
-105L)+48]/w*,

L

|l

1t

0
4
2
4
4
4
6
Li=

L =1 [- 8/(1 +)* + 50/(1 +w)? - 165/(1 +w)
+315L0-192+48 1] /",

L3 =337 [48/(1 +w)* + 56/(1 +w)® + 70/ (1 +w)?
+105/(1+u) +105LY] |

LE=531 [-48/(1+w)* +8/(1 +w)® + 10/(1 +w)?
+15/(1 +w) +15 LY /w |

Li=587 [48/(1 +2)* - 72/(1 +20)* + 6/ (1 + w)?
+9/(1+w) +9 LY /w?

Li=vlz[-48/(1 +w)*+136/(1 +w)* - 118/(1 +w)?
+15/(1 +w) +15 LY /w® |

L3 =53 [48/(1 +w)* - 200/(1 +w)® +326/(1 +w)*
-279/(1+w) +105 LY] /w*

L= 3 [- 48/(1 +w)* + 264/(1 +w)® — 630/(1 +w)?
+975/(1 +w) - 945 L? + 384] /w®
LY2=43 [48/(1 +w)* - 328/(1 +w)3 +1030/(1 + w)?
- 2295/(1 +w) + 3465 LY - 1920 + (384/3)w ] /w®,
(A5)

where w=(u-1)e/(1+2€).

*Portions of this work constitute the thesis of C. C.
Evans accepted by Wesleyan University in partial fulfil-
Iment of the requirements for the M. A. degree. This
work was partially supported by ONR Contract No.

PO-9-0163.
TPresent address: 6 Saratoga Road, Auburn, Mass.
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We have calculated the distribution function and drift velocity of electrons in the (111)
valleys of Ge. The model used is essentially a one-valley model for an electric field in the
[100] direction and without any electron transfer to higher valleys. The nonparabolicity of
the conduction band and the nonclassical occupation of the acoustic modes are taken into ac-
count. The coupling constants were obtained from a fit to the low-field mobility, and because
of the inclusion of nonparabolicity, the optical-mode coupling was smaller than previously
used. The calculated drift velocity is in excellent agreement with the results of Ruch and
Kino, and shows a low-temperature negative resistance which vanishes at somewhat above
77°K. Although the electron energies at an electric field of several thousand V/cm indicate
that some electron transfer to higher valleys is probably taking place, it is likely that this
transfer is not primarily responsible for the observed negative resistance, but rather results
in the resumption of a positive conductivity at still higher electric fields.

I. INTRODUCTION

The discovery of current oscillations in n-type
Ge by McGroddy and Nathan! and the subsequent
observation of a negative resistance in the bulk
I-V characteristics®® have resulted in a renewed
interest in the electrical conductivity of Ge.

In comparison with the negative conductance
observed in the I-V characteristics of GaAs, the
negative conductance in Ge with the electric field
along a (100) direction is relatively small and de-
creases with increasing temperature, vanishing
at somewhat above 100 °K.

Theoretically, the conductivity properties of n-
type Ge and GaAs should differ significantly in
detail, since they depend upon features of the band
structure and upon scattering mechanisms which
are considerably different in the two materials.
In GaAs, with its dominant polar optical-mode
electron scattering mechanism, the drift velocity
of electrons in the central minimum shows little
tendency to reach a limiting value for electric
fields at which electron transfer is unimportant.
At higher fields (>3000 V/cm) electrons increas-
ingly transfer to states in the (100) minima which
have a considerably greater density of states than
in the lowest conduction minimum and a much
lower mobility. The electron transfer mecha-
nism, therefore, acts rather effectively to produce

a negative resistance in GaAs.

In Ge, electron transfer is also possible, but
the effect on the electrical conductivity should be
less drastic than in GaAs, because the densities
of states and drift velocities of the upper and lower
minima are not greatly different in Ge. In Ge,
however, which is nonpolar, the drift velocity
would be expected, under certain assumptions, *
to reach a limiting value without electron transfer,
so that even a small modification of the I-V char-
acteristics due to transfer could cause a negative
resistance.

The assumptions which yield a limiting drift
velocity in Ge are not exactly obeyed, and it is
important to accurately know the drift velocity of
the electrons in the lowest minima if we are to
understand the over-all I-V characteristics. In
spite of some transfer to the (100) valleys, the
electrons in the (111) valleys probably constitute
a majority of the carriers over most of the nega-
tive-resistance region of interest.

The pressure experiment of Melz and McGroddy®
is, in fact, qualitatively consistent with the model
whereby the negative resistance in Ge is removed
rather than produced by electron transfer to higher
valleys. They found that the reduction by hydro-
static pressure of the separation between the (111)
and (100) valleys was accompanied by a decrease
in the amplitude of oscillations and an increase in



